

Simulations of extreme dry and wet rainy seasons of West Africa and their trend in future climates using a simple vegetation model within ECHAM5

Tim Brücher and Andreas H. Fink

Institute f. Geophysik and Meteorology, University of Cologne, Germany Centre for Applied Computer Sciences, University of Cologne, Germany

outlook

- Motivation / IMPETUS
- IMPETUS Model Chain (from global to local scale)
- SVege Simple Vegetation Model
- results
 - present day climate
 - future trends
- conclusion

outlook

Motivation

Rainfall Variability in Tropical West Africa (1921-2007)

$$Index = \frac{\overline{\sum_{JJAS}}RR_{i} - CLIM_{JJAS}}{\sigma_{JJAS}}$$

Base period: 1950-1990

Figures: courtesy of A. Fink and S.Kotthaus, IGM, University of Cologne, Germany

Number of available stations

motivation <u>IMPETUS</u> <u>SVege</u> <u>results</u> <u>conclusion</u>

Motivation

Rainfall Variability in Tropical West Africa (1921-2007)

$$Index = \frac{\overline{\sum_{JJAS}}RR_{i} - CLIM_{JJAS}}{\sigma_{JJAS}}$$

Base period: 1950-1990

what about ...

... future trends

... socioeconomic impacts

... food security

60

Figures: courtesy of A. Fink and S.Kotthaus, IGM, University of Cologne, Germany

Motivation

Rainfall Variability in Tropical West Africa (1921-2007)

$$Index = \frac{\overline{\sum_{JJAS}}RR_{i} - CLIM_{JJAS}}{\sigma_{JJAS}}$$

Base period: 1950-1990

what about ...

... future trends

... socioeconomic impacts

... food security

Figures: courtesy of A. Fink and S.Kotthaus, IGM, University of Cologne, Germany

IMPETUS

15°W

10°W

MOROCCO

Ouarzazate

An Integrated Approach to the Efficient Management of

Scarce Water Resources in West Africa

 The Catchments of the Ouémé-River (Benin) and the Wadi Drâa (Morocco) are investigated

- Relations to the climates of Europe might exist via complex atmosphere-ocean interactions in the area of the tropical/ subtropical and north Atlantic ocean
- West Africa: most pronounced inter-decadel variability of climate

• for more details see: http://www.impetus.uni-koeln.de

Challenges concerning future climate trends

- after the IPCC 4AR there is no clear projection for West African precipitation trends (increase / decrease)
 - it is necessary to put some light on it
- what about changes in the intensity and variability of the West African Monsoon on different time scales
- what about Monsoon onset and brakes in future climate

Project Plan

- **Ist Phase:** Data Acquisition and Modeling (2000-2003)
- 2nd Phase: Development of Scenarios and Problem Clusters (2003-2006)
- 3rd Phase: Transfer and Application: Capacity Building and Spatial Decision Support Systems (2006-2009)

Project Plan

- **Ist Phase:** Data Acquisition and Modeling (2000-2003)
- 2nd Phase: Development of Scenarios and Problem Clusters (2003-2006)
- **3rd Phase:** Transfer and Application: Capacity Building and Spatial Decision Support Systems (2006-2009)

IMPETUS model chain

- model chain for a statistic - dynamical downscaling of global projections down to key-region
- starting from 250 km
 down to 3 km

consider as many aspects as possible to get best boundary conditions for nested models

IMPETUS model chain

- model chain for a statistic - dynamical downscaling of global projections down to key-region
- starting from 250 km
 down to 3 km

consider as many aspects as possible to get best boundary conditions for

ne

include biosphere: Simple Vegetation model (SVege)

Motivation: using SVege within E4

Base period for anomaly: 1951-1994

Motivation: using SVege within E4

Base period for anomaly: 1951-1994

SVege: Simple Vegetation Model

Idea:

Changes of plant available groundwater

Leaf Area Index (LAI) and vegetation cover

changes in albedo

SVege: Simple Vegetation Model

g Ch ⊇ availa

Changes of plant available groundwater

Leaf Area Index (LAI) and vegetation cover

changes in albedo

SVege includes no dependencies of vegetation growth upon temperature and duration of sunshine:

- Implemented for non-boreal areas (40°N to 40°S)
- Outside this domain the albedo values from the Land Surface Parameters - dataset (LSP, Steffan Hagemann 2002) are used (climatological mean)
- No other changes in land surface parameters are simulated (e.g. roughness length)

SVege: Simple Vegetation Model

dea:

Changes of plant available groundwater

Leaf Area Index (LAI) and vegetation cover

changes in albedo

SVege includes no dependencies of vegetation growth upon temperature and duration of sunshine:

Implemented for non-boreal areas (40°N to 40°S)

our update:

only grid boxes with a vegetation cover higher than 15% are considered

simulated (e.g. roughness length)

SVege: "Cologne version"

SVege: "Cologne version"

SVege: "Cologne version

Annual cycle of albedo

reproduction of albedo's annual cycle

observed mean June to August precipitation (1960-1999)

Differences in summer of precipitation amounts (JJA)

observations – E5 SVege

Differences in summer of precipitation amounts (JJA)

observations – E5 SVege

observations – E5 original

Differences in summer of precipitation amounts (JA)

observations – E5 SVege

observations – E5 original

- both versions comprise same strengths and deficiencies
- •only small, insignificant differences between the model

 $-500 \ -300 \ -200 \ -100 \ 0 \ 100 \ 200 \ 300 \ 500 \ [mm] \qquad \qquad -500 \ -300 \ -200 \ -100 \ 0 \ 100 \ 200 \ 300 \ 500 \ [mm]$

decadal variability

decadal variability

significant changes to an higher correlation (up to 0.2) between model and observation using the vegetation model

precipitation annual cycle

precipitation annual cycle

precipitation annual cycle

about extreme dry and wet years

about extreme dry and wet years

Central Sahel

Guinea Coast

differences between both versions extreme dry and wet years

Central Sahel E5+SVege: wet years dry years

E5 original: wet years dry years

differences between both versions is extreme dry and wet years

Central Sahel E5+SVege: wet years dry years

E5 original: wet years dry years

differences between both versions in extreme dry and wet years

Central Sahel E5+SVege: wet years dry years

E5 original: wet years dry years

what about future trends?

increasing variability (AIB)

- increasing standard deviation of the precipitation index
- increasing number of extreme seasons in the Sahel + Guinea Coast (wet and dry)
- decreases are projected for the Sahel using the BI-scenario

significance of changes (AIB)

phase diagram to show variability of standard deviation and mean values

conclusion

- implementation of biosphere to ECHAM5 using a simple vegetation approach (SVege)
 - small, sometimes insignificant changes to standard version
 - improved representation of decadal variability
- getting sameresults by a morephysical based way

- the simple vegetation approach could be to simple for the sophisticated version of ECHAM5?
- COSMOS-Earth System Model (ESM); MPI-Hamburg, available in August / September (?)

ideas for future work

- •,,testing" the model in comparison to other WAMME experiments
- •improvement by using another aerosol climatology (A. Tompkins)

thanks for your interest